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In this paper we present a new spectral method for the fast evaluation of the
Fokker–Planck–Landau (FPL) collision operator. The method allows us to obtain
spectrally accurate numerical solutions with simplyO(n log2 n) operations in con-
trast with the usualO(n2) cost of a deterministic scheme. We show that the method
preserves the total mass whereas momentum and energy are approximated with
spectral accuracy. Numerical results for the FPL equation for Maxwell molecules
and for Coulomb interactions in two and three dimensions in velocity space are also
given. c© 2000 Academic Press
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1. INTRODUCTION

This paper is devoted to the development of numerical schemes for the accurate compu-
tation of the solution of the Fokker–Planck–Landau (FPL) equation. Here we will mainly
concentrate on the approximation of the collision operator, and hence of the velocity
space.

The FPL equation is a common kinetic model in plasma physics. It is described by a
nonlinear partial integrodifferential equation

∂ f

∂t
+ v · ∇x f = QL( f, f ), x, v ∈ IR3, (1.1)
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whereQL is the Landau collision operator

QL( f, f )(v) = ∇v ·
∫

A(v − v∗)( f (v∗)∇v f (v)− f (v)∇v∗ f (v∗)) dv∗. (1.2)

The unknown functionf = f (x, v, t), which represents the density of a gas in the phase
space of all positionsx and velocitiesv of particles, is assumed to be nonnegative and
integrable together with its moments up to the order two.

In (1.2) A depends on the interaction between particles and is ad × d nonnegative and
symmetric matrix of the form

A(z) = 9(|z|)5(z). (1.3)

Here9 is a nonnegative function and5(z) is the orthogonal projection upon the space
orthogonal toz,

5i j (z) =
(
δi j − zi zj

|z|2
)
. (1.4)

In the case of inverse-power laws withγ ≥ −3,

9(z) = 3|z|γ+2, (1.5)

where3 > 0 is a constant.
As for the Boltzmann equation, different values ofγ lead to the usual classification in hard

potentials(γ > 0), Maxwellian molecules(γ = 0), or soft potentials(γ <0). This latter
case involves the Coulombian caseγ = −3, which is of primary importance for plasma
applications.

Equation (1.1) is obtained as a limit of the Boltzmann equation when all the collisions
become grazing. The original derivation of the equation is due to Landau [18].

For the formal mathematical derivation of the equation, we cite Arsen’ev and Buryak [1],
Degond and Lucquin-Desreux [10] and Desvillettes [12]. Recently Villani [33] obtained a
complete rigorous proof of this asymptotic problem in the space homogeneous situation.
The mathematical properties of the spatially homogeneous FPL equation whenγ > 0 have
been recently studied by Desvillettes and Villani [13].

The numerical solution of nonlinear kinetic equations, such as the FPL equation, rep-
resents a real challenge for numerical methods. This is essentially due to the nonlinearity,
to the large number of variables (seven for the full problem), and to the threefold integral
(1.2). In addition, this integration has to be handled carefully since it is at the basis of the
macroscopic properties of the equation.

The structure of the FPL collision operator is similar to that of Boltzmann’s collision
operator and has the same fundamental properties of conserving mass, momentum, and
energy,

∫
IR3

QL( f, f )

 1
v

|v|2

dv = 0, (1.6)
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and of satisfying the entropy inequality (H -theorem)∫
IR3

Q( f, f ) log( f ) dv ≤ 0. (1.7)

The H -theorem implies that any equilibrium distribution function, i.e., any functionf for
which QL( f, f ) = 0, has the form of a locally Maxwellian distribution

M(ρ, u, T)(v) = ρ

(2πT)3/2
exp

(
−|u− v|

2

2T

)
, (1.8)

whereρ, u, andT are the density, mean velocity, and temperature of the gas given by

ρ =
∫

IR3
f (v) dv, u = 1

ρ

∫
IR3
v f (v) dv, T = 1

3ρ

∫
IR3
|u− v|2 f (v) dv. (1.9)

There are several papers that refer to the numerical solution of the Fokker–Planck or the
Landau–Fokker–Planck equation. Among these we recall [2, 3, 5–7, 9–11, 14, 15, 19–21,
30, 34].

Most of them are devoted to the Fokker–Planck equation [9, 20], or they consider con-
servative and entropic schemes in simplified situations, such as FPL equation in dimension
two of velocity or spherically symmetric solutions in space homogeneous situations [2, 3,
6, 15, 30]. Entropic schemes are physically relevant and, as observed in [6], are able to
prevent oscillations. The construction of a conservative and entropic scheme for the gen-
eral situation has been considered by Degond and Lucquin-Desreux [11, 21] and Buet and
Cordier [5]. Several fast approximated algorithms to reduce the computational complexity
of these methods have been proposed recently [7, 19].

Although these fast schemes are able to preserve the most relevant physical properties,
the degree of accuracy of such approaches is not clear. However, even if conservation
properties are not imposed from the beginning, an accurate scheme would provide an
accurate approximation of the conserved quantities. A detailed comparison of the present
scheme with the schemes proposed in [7, 19] is the subject of a work in preparation [16].

Here we will extend to the FPL equation a new spectral method for the numerical solution
of the homogeneous Boltzmann equation based on a Fourier spectral approximation of the
collision operator (1.2) recently introduced in [25, 26]. In these papers a discretization of
the collision operator based on Fourier expansion of the distribution function with respect
to the velocity variable has been developed. The main advantage of the method is that we
can obtain highly accurate numerical solutions at a reduced computational cost.

For the FPL equation, we show that the method reduces the quadratic cost fromO(n2)

to O(n log2 n), wheren is the number of parameters which characterize the discretized
distribution function with respect to the velocity variable (for example, for a finite difference
method with a grid in velocity space withN grid points per direction,n = N3; for a Monte
Carlo method where the distribution function is approximated byN particles,n = 3N;
and so on). Furthermore, the method can be designed to preserve mass and to approximate
momentum and energy with spectral accuracy; i.e., the error decreases faster than any power
of the step size of the mesh in velocity [8, 17].

It is interesting to remark that, by a direct comparison of the results both in the Boltzmann
and in the FPL case, one is driven to the conclusion that the spectral method gives the same
problem to be solved, in which the characteristics of the collision operator are entirely
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contained in the coefficients of the scheme. In other words, any bilinear integrodifferential
equation of kinetic type, conserving mass, momentum, and energy, has the same spectral
form. This allows us to concentrate on a high resolution of the kernel modes and to consider
the development of spectral methods for the FPL grazing collision limit of the Boltzmann
equation [29].

In the Boltzmann case, for the variable hard-sphere (VHS) model, the computation of
such modes reduces to a single integration that in some cases (hard spheres, Maxwell
molecules) can be computed explicitly. For the FPL equation, we are in a similar situation.
The calculation of the kernel modes of the FPL operator requires only the computation
of one-dimensional integrals for the FPL equation with two dimensions in velocity or
two-dimensional integrals for the FPL equation with three dimensions in velocity (see
Appendix).

The rest of the paper is organized as follows. In the next section we introduce the Fourier
spectral method for the FPL equation and discuss the main properties of the scheme.
Section 3 is devoted to the development of a fast algorithm for the computation of the
scheme. We show how the use of transform methods allows us to reduce the cost from
O(n2) to O(n log2 n). Numerical results, for both the Maxwellian and the Coulombian case,
that confirm the spectral accuracy and the efficiency of the method are given in Section 4.
Finally in Section 5 we discuss some future developments. In a separate Appendix we give
the details of the computation of the kernel modes.

2. SPECTRAL PROJECTION OF THE FPL EQUATION

A standard approach to the numerical solution of kinetic equations such as Eq. (1.1) is
based on a splitting method (also referred to as a fractional step method). If we want to solve
the equation of a time step1t , the method consists of solving a sequence of two steps,

∂ f̃

∂t
= QL( f, f ),

(collision step)
f̃ (x, v,0) = f0(x, v),

∂ f̄

∂t
+ v · ∇x f̄ = 0,

(convection step)

f̄ (x, v,0) = f̃ (x, v,1t),

where f0(x, v) is the initial condition.
Such a scheme is only first-order accurate in time; i.e., the difference between the exact

and approximate solution after one time step (local truncation error) is second order in1t ,

f (v,1t)− f̄ (v,1t) = O(1t2).

A different splitting strategy leads to a higher order approximation in time. A very common
and simple scheme is Strang splitting [32], which gives second order in time. This approach
has been used for the numerical solution of the Boltzmann equation in [23].

From now on we restrict ourselves to consider a spectral projection of the space homo-
geneous FPL equation

∂ f

∂t
= QL( f, f ), (2.10)
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supplemented with the initial condition

f (v, t = 0) = f0(v). (2.11)

First, we observe that a simple change of variable into the FPL collision operator (1.2)
permits us to write

QL( f, f )(v) = ∇v ·
∫

A(g)( f (v + g)∇v f (v)− f (v)∇g f (v + g)) dg, (2.12)

whereg = v − v∗.

2.1. Derivation of the Method

Similarly to the Boltzmann case [25] it can be shown that for a collision operator such
as (2.12) we have the following property:

PROPOSITION2.1. Let Supp( f (v)) ⊂ B(0, R), whereB(0, R) is the ball of radius R
centered in the origin. Then

QL( f, f )(v) = ∇ ·
∫
B(0,2R)

A(g)( f (v + g)∇ f (v)− f (v)∇g f (v + g)) dg,

with v + g ∈ B(0, 3R).

Proof. Indeed, ifv andv + g ∈ B(0, R) then

|g| = |v − v − g| ≤ |v| + |v + g| ≤ 2R.

Otherwise, ifv or v + g 6∈ B(0, R) then

QL( f, f )(v) = 0.

Finally v ≤ R andg ≤ 2R implies

|v + g| ≤ |v| + |g| ≤ 3R.

Thus, as for the Boltzmann equation [25, 26], in order to develop a spectral approximation
to (1.2) we can consider the distribution functionf (v) restricted on the cube [−T, T ]3

with T ≥ 3R, assumingf (v) = 0 on [−T, T ]3 \B(0, R), and extend it by periodicity to a
periodic function on [−T, T ]3. As observed in [26], in practice, sincef is assumed to be a
periodic function, it is enough to takeT ≥ 2R to prevent intersections of the regions where
f is different from zero. To simplify the notation, from now on we will assumeT = π and
henceR= π/2.

The distribution functionfN is approximated by the truncated Fourier series

fN(v) =
N∑

k=−N

f̂ keik·v, (2.13)

f̂ k = 1

(2π)3

∫
[−π,π ]3

f (v)e−ik·v dv. (2.14)
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Here we use a compact notation to denote the Fourier modes and its summation. Byk
we actually mean a vector with integer components,(k1, k2, k3), and the summation of any
quantityhk = h(k1,k2,k3) that depends onk is to be interpreted as

N∑
k=−N

hk ≡
N∑

k1=−N

N∑
k2=−N

N∑
k3=−N

h(k1,k2,k3).

We obtain a set of ordinary differential equations for the coefficientsf̂ k by requiring that
the residual of (2.12) be orthogonal to all trigonometric polynomials of degree≤N [8, 17].

Hence fork = −N, . . . , N∫
[−π,π ]3

(
∂ fN

∂t
− QL( fN, fN)

)
e−ik·v dv = 0. (2.15)

By substituting expression (2.13) in (2.12) we get

QL( fN, fN) =
N∑

l=−N

N∑
m=−N

f̂ l f̂ mβ̂L(l ,m) ei (l+m)·v,

where

β̂L(l ,m) =
∫
B(0,π)

9(g)[(l +m)(l −m)− (l +m) · µ(l −m) · µ] eig·m dg,

with µ = g/|g|. The previous expression can be rewritten, as in the Boltzmann case, as a
difference of two terms,̂βL(l ,m) = B̂L(l ,m)− B̂L(m,m), where theFPL kernel modes
B̂L(l ,m) are given by

B̂L(l ,m) =
∫
B(0,π)

9(g)[l 2− (l · µ)2]eig·m dg. (2.16)

It is very remarkable that (2.16) is a scalar quantity completely independent of the function
fN and of the argumentv. In addition it can be easily proved that

PROPOSITION2.2. Let B̂L(l ,m) be defined by(2.16). Then

(i) B̂L(l ,m) = B̂L(−l ,m) = B̂L(l ,−m) = B̂L(l ,−m).
(ii ) B̂L(m,m) is a function of|m|.
(iii ) If the kernel9(g) = 3|g|2+γ then|B̂L(l ,m)| ≤ |l |2B̂L(0, 0), where

B̂L(0, 0) = 4π
πγ+5

γ + 5
3.

Finally, using the orthogonality property we get from (2.15) the scheme

∂ f̂ k

∂t
=

N∑
l+m=k

l ,m=−N

f̂ l f̂ mβ̂L(l ,m), k = −N, . . . , N. (2.17)
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Remark 2.1.

• As a consequence of point (ii ) and of the fact that9 depends only on|g|, the Landau
kernel modes are real.
• Scheme (2.17) has exactly the same structure of the Boltzmann scheme derived in [25,

26]. The only difference is the presence of the FPL kernel modes instead of the Boltzmann
kernel modes.

2.2. Main Properties

Let us first set up the mathematical framework of our analysis. For anyt ≥ 0, fN(v, t)
is a trigonometric polynomial of degreeN in v; i.e., fN(t) ∈ IP N where

IP N = span{eik·v| − N ≤ kj ≤ N, j = 1, 2, 3}.
Moreover, letPN : L2([−π, π ]3)→ IP N be the orthogonal projection uponIP N in the inner
product ofL2([−π, π ]3) (see (2.15)):

〈 f − PN f, φ〉 = 0, ∀φ ∈ IP N .

We denote theL2-norm by

‖ f ‖2 = (〈 f, f 〉)1/2.
With this definitionPN f = fN , where fN is the truncated Fourier series off (2.13) and
the method defined by (2.17) can be written in equivalent form as

∂ fN

∂t
= QL

N( fN, fN) (2.18)

with the initial condition

fN(v, t = 0) = f0,N(v), (2.19)

where we denote withQL( f, f ) the FPL collision operator with cutoff over the relative
velocity andQL

N( f, f ) :=PN QL( fN, fN). We point out that because of the periodicity
assumption onf the collision operatorQL( f, f ) preserves in time the mass contained in
the period. In contrast, momentum and energy are not preserved in time.

From point(i ) of Proposition 2.2 it is also clear that the projected collision operator
QL

N( fN, fN) will preserve the mass in time. In fact, from

ρ =
∫

[−π,π ]3
fN(v) dv = (2π)3 f̂ 0,

we obtain

d f̂ 0

dt
=

N∑
m=−N

f̂ −m f̂ m(B̂L(−m,m)− B̂L(m,m)) = 0,

sinceB̂L(−m,m) = B̂L(m,m).
Next if we denote byHr

p([−π, π ]3), wherer ≥ 0 is an integer, the subspace of the
Sobolev spaceHr ([−π, π ]3), which consists of periodic functions [8], we can state the
following [29]:



FAST METHODS FOR THE FPL COLLISION OPERATOR 223

PROPOSITION2.3. Let f, g ∈ L2([−π, π ]3). Then

‖QL( f, g)‖2 ≤ C‖g‖1‖ f ‖H2
p
.

Following the same strategy as in [26], we can show that consistency and spectral accuracy
of the method will be a consequence of the previous estimate of the real FPL operator.

The consistency of theL2 norm for the approximation of the FPL collision operator
QL( f, f ) with QL

N( fN, fN) is given by

THEOREM2.1. Let f ∈ H2
p([−π, π ]3). Then∀r ≥ 0

∥∥QL( f, f )− QL
N( fN, fN)

∥∥
2 ≤ C

(
‖ f − fN‖H2

p
+ ‖Q

L( fN, fN)‖Hr
p

Nr

)
, (2.20)

where C depends on‖ f ‖2.

Proof. First, we can split the error into two parts:∥∥QL( f, f )− QL
N( fN, fN)

∥∥
2

≤ ‖QL( f, f )− QL( fN, fN)‖2+
∥∥QL( fN, fN)− QL

N( fN, fN)
∥∥

2.

Now clearlyQL( fN, fN) ∈ IP2N and henceQL( fN, fN) is periodic and infinitely smooth
together with all its derivatives. Thus [8]

∥∥QL( fN, fN)− QL
N( fN, fN)

∥∥
2 ≤

C

Nr
‖QL( fN, fN)‖Hr

p
, ∀r ≥ 0. (2.21)

Applying Proposition 2.3 and the identity

QL( f, f )− QL(g, g) = QL( f + g, f − g)

we have

‖QL( f, f )− QL( fN, fN)‖2
= ‖QL( f + fN, f − fN)‖2 ≤ C‖ f + fN‖1‖ f − fN‖H2

p
≤ 2C1‖ f ‖2‖ f − fN‖H2

p
.

Finally the following corollary states the spectral accuracy of the approximation of the
FPL collision operator:

COROLLARY 2.1. Let f ∈ Hr
p([−π, π ]3), r ≥ 2. Then

∥∥QL( f, f )− QL
N( fN, fN)

∥∥
2 ≤

C

Nr−2

(‖ f ‖Hr
p
+ ‖QL( fN, fN)‖Hr

p

)
. (2.22)

Proof. It is enough to observe that

‖ f − fN‖H2
p
≤ C

Nr−2
‖ f ‖Hr

p
.
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Remark 2.2. From the previous corollary it follows that∣∣〈QL( f, f ), ϕ〉 − 〈QL
N( fN, fN), ϕ

〉∣∣ ≤ C

Nr−2
‖ϕ‖2

(‖ f ‖Hr
p
+ ‖QL( fN, fN)‖Hr

p

)
,

and hence, by takingϕ = v, v2, the spectral accuracy of the moments. In particular it follows
that, except for the projection errors on the initial data, the variations of momentum and
energy introduced by the semidiscrete scheme are spectrally small and hence the observed
variations with respect to the projected moments are due to the aliasing of periods. Alias-
ing effects are always present when one approximates a vanishing function by a periodic
function (see [8, 17]).

3. AN n log2 n EXACT ALGORITHM

Let us rewrite scheme (2.17) in the form

∂ f̂ k

∂t
=

N∑
m=−N

f̂ k−m f̂ mβ̂L(k−m,m), k = −N, . . . , N. (3.23)

In the previous expression we assume that the Fourier coefficients are extended to zero
for |kj | > N, j = 1, 2, 3. The straightforward evaluation of (3.23) requires exactlyO(n2)

operations, wheren = Nd andd ≥ 2 is the dimension of the velocity space. As we will
see, thanks to the particular structure of the kernel modes, using transform methods it is
possible to reduce the computational cost to onlyO(n log2 n) operations.

To this aim we observe that the term̂BL(l ,m) splits as

B̂L(l ,m) = l 2
∫
B(0,π)

9(g)eig·mdg−
d∑

p,q=1

l p lq

∫
B(0,π)

9(g)µpµqeig·m dg

:= l 2F(m)−
d∑

p,q=1

l p lq I pq(m) (3.24)

= l 2F(m)− l I(m) l T ,

wherel T denotes the transpose of the vectorl = (l1, l2, l3) andI = (I pq) is a 3× 3 sym-
metric matrix.

Thus we can write

β̂L(l ,m) = l 2F(m)− l I(m)l T − B̂L(m,m), (3.25)

and so the resulting scheme requires the evaluation ofd(d + 1)/2+ 1 convolution sums
for the gain term (the number of distinct elements ofI plus one) and a single convolution
sum for the loss term:

∂ f̂ k

∂t
=

N∑
m=−N

f̂ k−m f̂ m(k−m)2F(m)−
N∑

m=−N

f̂ k−m f̂ mB̂L(m,m)

−
d∑

p,q=1

N∑
m=−N

f̂ k−m f̂ m(kp −mp)(kq −mq)I pq(m).



FAST METHODS FOR THE FPL COLLISION OPERATOR 225

It is well-known that transform methods enable us to evaluate a convolution sum of the
form

S(k) =
N∑

m=−N

f (k−m)g(m), (3.26)

where f andg are arbitrary functions ofZZd in IR, in O(n log2 n) operations instead of
O(n2) [8]. This can be easily achieved in the following way:

• First, using the FFT algorithm one transformsf andg to f̂ andĝ at a costO(n log2 n).
• Next one performs a term by term multiplication of the transformed functionsf̂ and

ĝ at a costO(n).
• Finally it is enough to transform the result through the inverse FFT algorithm at a cost

O(n log2 n) to determineS(k).

For the details of the implementation of this standard technique for spectral methods we
refer the reader to [8]. In a separate Appendix we give the details of the computation of
B̂L(l ,m).

4. NUMERICAL TESTS

In this section we perform some numerical tests of the scheme, to check the spectral
accuracy and the efficiency of the method.

4.1. Time Discretization

All calculations have been performed by a fourth-order Adams–Bashforth scheme, with
fixed time step.

The first three values of the sequence have been computed by a fourth-order explicit
Runge–Kutta scheme. This Adams–Bashforth scheme provides the high temporal accu-
racy needed to demonstrate spectral accuracy in velocity, at the cost of only one function
evaluation per time step.

The FPL equation suffers from the stiffness typical of diffusion equations. The stability
condition requires that the time step scales with the square of the velocity step. This means
that by doubling the number of Fourier modes per direction, the total number of time steps
becomes four times bigger to compute up to the same final time. We have not performed
a stability analysis of the scheme, and the stability condition used in the computation has
been found empirically.

No attempt has been made to overcome the numerical stiffness of the problem caused by
diffusion. Although this is a very important issue and deserves a careful study, it is beyond
the scope of the present paper. Further comments will be found in the last section.

4.2. Test Cases

We consider three test cases.

Test #1(BKW exact solution)
Two dimensions in velocity space. Maxwellian molecules (i.e.,γ = 0), with C0 =

1/(2π).
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Initial condition:

f (v, 0) = v2

πσ 2
exp(−v2/σ 2).

Integration time:tmax= 15. This problem has an exact solution given by [4, 19]

f (v, t) = 1

2πS2

(
2S− 1+ 1− S

2S

v2

σ 2

)
exp

(
− v2

2Sσ 2

)
,

whereS= 1− exp(−σ 2t/8)/2. In the computation, the scaling parameterσ is chosen in
such a way that the numerical support of the initial condition is well approximated by
B(0, π).

This test is used to check spectral accuracy, by comparing the error at a given time, when
usingn = 8, 16, 32, and 64 Fourier modes for each dimension.
Test #2(Sum of two Gaussians)

Three dimensions in velocity space. Coulomb case (i.e.,γ = −3), with C0 = 1/(4π).
Initial condition:

f (v, 0) = 1

2(2πσ 2)3/2

[
exp

(
−|v − 2σe1|2

2σ 2

)
+ exp

(
−|v + 2σe1|2

2σ 2

)]
,

with σ = π/10. Integration time:tmax= 10.
Heree1 ≡ (1, 0, 0) denotes the unit vector in the directionvx.
This test is used to compute the evolution of the entropy and of the second-order moments.

Test #3(Rosenbluth problem)
Three dimensions in velocity space. Coulomb case, withC0 = 1/(4π) as before.
Initial condition:

f (v, 0) = 1

S2
exp

(
−S

(|v| − σ)2
σ 2

)
,

with σ = 0.3 andS= 10.
Integration time:tmax= 900.
This test is used to compute the evolution of the solution in time and to compare the

results with those obtained in [6, 31].

4.3. Numerical Results

For the first test, we compute the error by comparing the numerical solution to the exact
solution. In Table I we report the relativeL∞, L1, andL2 norms of the error at timet = 1
for σ = π/Vmax andVmax= 6.6. In the last three columns the order of accuracy is reported,
computed as log2(erri /erri+1). The same quantities are reported in Table II when the solution
is very close to equilibrium, at timet = 100 forVmax= 7.7.

In Table III we report the corresponding error in energy, together with the velocity at
which the maximum error occurs.

The relative norms of the error are computed as

err∞(t) = maxk|ek(t)|
maxk| f (vk, t)| , (4.27)
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TABLE I

Short-Time Convergence Test for Maxwell Molecules in 2D

Error at timet = 1 for Vmax = 6.6 Convergence rate

# modes L∞ L1 L2 L∞ L1 L2

8× 8 1.68× 10−1 2.67× 10−1 1.39× 10−1 3.52 3.00 3.13
16× 16 1.46× 10−2 3.32× 10−2 1.59× 10−2 12.98 13.46 13.35
32× 32 1.80× 10−6 2.94× 10−6 1.52× 10−6 7.47 8.05 7.60
64× 64 1.01× 10−8 1.11× 10−8 7.84× 10−9 — — —

err1(t) =
∑

k |ek(t)|∑
k | f (vk, t)| , (4.28)

err2(t) =
( ∑

k |ek(t)|2∑
k | f (vk, t)|2

)1/2

, (4.29)

where f (vk, t) is the exact solution, andek(t) ≡ f (vk, t)− fN(vk, t) is the difference
between the exact and the numerical solution.

The rate at which the error decays with the increase of the number of modes is an indication
of spectral accuracy. When the number of modes becomes higher, however, the order of
accuracy does not increase. This is because the main cause of error is the approximation
of the distribution function with a periodic function in phase space. In other words, the
dominant error is aliasing error.

This effect is more evident by looking at the figures. In Fig. 1 for large time the aliasing
error is dominant, and there is no gain in using a finer grid. In fact, when using more grid
points, one should also increase the period, so that the discretization error is comparable
with the aliasing error. In Fig. 2 the result of similar computation is shown, but a larger
period has been used by takingσ = π/7.7. In this case the aliasing error is reduced and
accuracy is greatly improved by increasing the number of Fourier modes. Clearly, for very
long times the dominant error is again due to aliasing (see Table II). For a more detailed
discussion of this issue see [26].

For the second test we compute the entropy decay (Fig. 3) and the evolution of the
temperatureTx andTy (Fig. 4) defined by

Tx =
∫
(vx − ux)

2 f (v) dv∫
f (v) dv

, Ty =
∫
(vy − uy)

2 f (v) dv∫
f (v) dv

,

TABLE II

Long-Time Convergence Test for Maxwell Molecules in 2D

Error at timet = 100 forVmax = 7.7 Convergence rate

# modes L∞ L1 L2 L∞ L1 L2

16× 16 4.37× 10−2 2.98× 10−2 2.80× 10−2 12.31 11.93 12.20
32× 32 8.63× 10−6 7.66× 10−6 5.96× 10−6 2.92 3.03 2.91
64× 64 1.14× 10−6 9.37× 10−7 7.94× 10−7 — — —



TABLE III

Short- and Long-Time Behavior of the Relative Error in fv2 for Maxwell Molecules in 2D

t = 1, Vmax = 6.6 t = 100,Vmax = 7.7

# modes L∞ error in f v2 Position L∞ error in f v2 Position

8× 8 1.51× 10−1 (−3.3, 3.3) — —
16× 16 9.92× 10−2 (0.0, 6.6) 4.71× 10−2 (0.0,−7.7)
32× 32 1.41× 10−4 (6.6, 0.0) 2.22× 10−5 (1.925,−0.9625)
64× 64 2.59× 10−6 (0.0,−3.3) 1.14× 10−6 (−4.09, 1.925)

FIG. 1. RelativeL1 norm of the error for Test #1.Vmax = 6.6. Number of modes: 82 (dot–dashed line), 162

(continuous line), 322 (dotted line), 642 (dashed line).

FIG. 2. RelativeL1 norm of the error for Test #1.Vmax = 7.7. Number of modes: 82 (dot–dashed line), 162

(continuous line), 322 (dotted line), 642 (dashed line).
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FIG. 3. Entropy decay for Test #2. Number of modes: 163 (dotted line) and 323 (continuous line).

whereux anduy are the components of the mean velocity. In the figures, the dotted line is
obtained with 163 modes and the continuous line with 323 modes. The entropy is computed
by discretizing the expression

H =
∫

[−T,T ]3
f (v) log f (v) dv

on the velocity grid by a straightforward formula.

FIG. 4. Temperature evolution for Test #2. Number of modes: 163 (dotted line) and 323 (continuous line).
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TABLE IV

Computational Costs (Seconds) for One Evaluation of the FPL

Operator in 2D and 3D

2D 3D

# modes CPU time # modes CPU time

8× 8 0.0055 8× 8× 8 0.20
16× 16 0.027 16× 16× 16 2.15
32× 32 0.16 32× 32× 32 23.3
64× 64 0.73 — —

The computation times for the evaluation of the collision operator are reported in Table IV.
All the calculations, including the tests for the computation time, have been performed on a
simple Intel Pentium 266 MHz machine, running under Linux. Note that the increase of the
computational time is in good agreement with the theoretical prediction, since it increases
approximatively asn log2 n.

For the last test case we compute the time evolution of the distribution function.
In Figs. 5 and 6 computations performed respectively withN = 163 andN = 323 modes

are reported. In the figures we show the cross section of the distribution function at times
t = 0, 9, 36, 81, 144, 225, and 900. The results are in good agreement with those presented
in [6, 31].

5. FUTURE DEVELOPMENTS

We have presented a way to construct fast spectral methods for the FPL equation.
The present work is a first step in the construction of an effective scheme for the numerical

solution of the FPL equation. The method should be suitable for treating cases where the

FIG. 5. Cross section of the distribution function at different times, for Test #3. Number of modes: 163. Grid
values (∗); trigonometric reconstruction (continuous line).
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FIG. 6. Cross section of the distribution function at different times, for Test #3. Number of modes: 323. Grid
values (∗); trigonometric reconstruction (continuous line).

distribution function can be effectively described with a reasonably low number of Fourier
modes. This is the case, in particular, of smooth distribution functions.

The main features of the method are its simplicity and generality and the possibility
of providing spectrally accurate numerical approximations with a strong reduction in the
computational cost. In fact, using transform methods it is possible to evaluate exactly the
spectral scheme with onlyO(n log2 n)operations as opposed to the usualO(n2) cost. From a
physical point of view the method preserves the mass whereas the other physical properties,
such as conservation of momentum and energy are “spectrally preserved.” These properties
are strongly influenced by the aliasing effects in the scheme and hence depend on the choice
of the computational domain in the velocity space.

The problem of finding a suitable time discretization to avoid the restriction on the time
step needs further investigations. This problem has been treated with implicit schemes in
[9, 20] for the Fokker–Planck equation and in [15] for the FPL equation in the radially
symmetric case.

For the general case this problem is not easy to solve, and the use of implicit schemes
would be very expensive. An alternative to an implicit scheme could be the use of ex-
plicit schemes with a large stability region [22]. Such an approach is under investigation
[24].

In the near future we plan to extend this approach to spatially nonhomogeneous situations.

APPENDIX

Computation of the Kernel Modes

We will restrict ourselves here to the case of inverse-power laws; hence9(g) = 3|g|γ+2.
To simplify notation we fix3 = 1.
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To implement the scheme, the following quantities are needed:

F(m) =
∫
B(0,π)
|g|2+γeig·m dg

and

I pq(m) =
∫
B(0,π)
|g|γ gpgqeig·m dg, p, q = 1, . . . ,d.

We consider separately the computation of the coefficients in 2D and 3D.

2D Case

A simple calculation (see [26]) shows that in two dimensions

F̃(m) = F(|m|) = 2π
∫ π

0
r γ+3J0(|m|r ) dr, (A.30)

whereJ0 is the Bessel function of order 0.
In addition it can be shown that

I11(m) = 1

2

[
F(|m|)+ m2

1−m2
2

|m|2 G(|m|)
]
,

I22(m) = 1

2

[
F(|m|)− m2

1−m2
2

|m|2 G(|m|)
]
, (A.31)

I12(m) = I21(m) = m1m2

|m|2 G(|m|),

where

G(|m|) =
∫ π

0
r γ+3C(|m|r ) dr (A.32)

and

C(x) =
∫ 2π

0
cos(x cosφ) cos(2φ) dφ. (A.33)

Thus the computation of the FPL kernel modes in 2D reduces simply to the computation
of two one-dimensional integralsF(|m|) andG(|m|) for eachm. These quantities can be
computed very accurately once and then stored in two bidimensional arrays.

A very efficient way to compute all these integrals inO(N2) operations is the following.
First write the integralF as

F(|m|) = 2π

|m|γ+4
F1(π |m|) (A.34)

with

F1(z) =
∫ z

0
xγ+3J0(x) dx.
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Because the coefficients depend only on|m|, it is enough to compute them form= (m1,m2),
with 0≤ m1 ≤ m2 ≤ N. Let us sort those points in increasing size:m( j ), j = 1, . . . ,
(N + 1)(N + 2)/2, |m( j+1)| ≥ |m( j )|. Then one is left with the computation ofF(π |m( j )|).
This computation involves the evaluations of integrals of the form∫ π|m( j+1)|

π|m( j )|
xγ+3J0(x) dx.

Note that many such integrals are zero—those for which|m( j )| = |m( j+1)|. Furthermore,
the integration interval is very small; therefore the integrals are accurately computed with
few calculations. Because the function is regular, we used an adaptive Romberg quadrature
rule, with tolerance 10−13.

The value of

F(0) = 2π
πγ+4

γ + 4

is computed analytically.
For the computation ofG(|m|), we use the same technique, giving

G(|m|) = 1

|m|γ+4
F2(π |m|),

where

F2(z) =
∫ z

0
xγ+3C(x) dx.

The functionF2 can be computed on the grid by using the same technique used for the
computation ofF1(x). The functionC(x) is computed by cubic spline interpolation of
precomputed values of the integral (A.33) on a uniform grid in the interval [0, Rmax], with
Rmax= Nπ

√
2. The number of grid points for the computation ofC has been chosen as

Np = [20Rmax] ([ ·] denotes the integer part). The computation of the values ofC(x) on
a grid is performed by simple trapezoidal rule, which is spectrally accurate in this case,
since the integrand is periodic. The values of the derivative ofC(x) at the extrema are
precomputed and used to determine the coefficients of the spline interpolation.

3D Case

It is easy to verify that (see [26]) in three dimensions

F̃(m) = F(|m|) = 4π

|m|γ+5
F3(π |m|), (A.35)

where

F3(z) =
∫ z

0
xγ+3 sin(x) dx.

The functionF3(π |m|) can be efficiently computed on the three-dimensional gridm=
(m1,m2,m3), 0≤ m1 ≤ m2 ≤ m3, by using the same technique used in the computation



234 PARESCHI, RUSSO, AND TOSCANI

of F1(z). The value form= 0 is computed analytically and is

F(0) = 4π
πγ+5

γ + 5
.

The computation ofIαβ is a little more involved. Let us start from the definition

Iαβ(m) =
∫

B(0,π)
|q|γ exp(iq ·m)qαqβ dq.

Because of the symmetries ofI, it is enough to computeI33(m) and I12(m), for m=
(m1,m2,m3), with 0≤ m1 ≤ m2 ≤ N, 0≤ m3 ≤ N. We have

I33(m2,m1,m3) = I33(m1,m2,m3),

I33(−m1,m2,m3) = I33(m1,m2,m3),

I33(m1,m2,−m3) = I33(m1,m2,m3),

I12(m2,m1,m3) = I12(m1,m2,m3),

I12(−m1,m2,m3) = −I12(m1,m2,m3),

I12(m2,m1,−m3) = I12(m1,m2,m3),

I11(m1,m2,m3) = I33(m2,m3,m1),

I22(m1,m2,m3) = I33(m3,m1,m2),

I23(m1,m2,m3) = I12(m2,m3,m1),

I31(m1,m2,m3) = I12(m3,m1,m2).

Evaluation of I33

Simple computations show that

I33(m1,m2,m3) = 2π
∫ π

0
ργ+4F4

(
ρm3, ρ

√
m2

1+m2
2

)
dρ,

where

F4(a, b) =
∫ π

0
cos(a cosθ) cos2 θ sinθ J0(bsinθ) dθ.

Therefore

I33(0) = 4

3

πγ+6

γ + 5
.

For each value ofm, I33 can be computed by a nested call of an adaptive quadrature routine.
Note that the tolerance of the innermost quadrature call must be more stringent than the one
of the outermost quadrature, in order to ensure convergence of the procedure.



FAST METHODS FOR THE FPL COLLISION OPERATOR 235

Evaluation of I12

Similarly to the previous case we have

I12(m1,m2,m3) = m1m2

m2
1+m2

2

∫ π

0
ργ+4F5

(
ρm3, ρ

√
m2

1+m2
2

)
dρ,

where

F5(a, b) =
∫ π

0
cos(a cosθ) sin3 θC(bsinθ) dθ

andC(x) is defined in Eq. (A.33). ThusI12(0) = 0, becauseC(0) = 0. As in the case of
I33, for each value ofm, I12 can be computed by a nested call of an adaptive quadrature
routine.
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21. B. Lucquin-Desreux, Discr´etization de l’opérateur de Fokker–Planck dans le cas homog`ene,C. R. Acad. Sci.
Paris, Ser. 1A 314, 407 (1992).

22. A. A. Medovikov, High order explicit methods for parabolic equations,BIT 38(2), 372 (1998).

23. T. Ohwada, Higher order approximation methods for the Boltzmann equation,J. Comput. Phys.139, 1 (1998).

24. L. Pareschi and F. Filbet, in preparation.

25. L. Pareschi and B. Perthame, A Fourier spectral method for homogeneous Boltzmann equations,Transp.
Theory Stat. Phys.25, 369 (1996).

26. L. Pareschi and G. Russo, Numerical solution of the Boltzmann equation I: Spectrally accurate approximation
of the collision operator,SIAM J. Numer. Anal.37, 1217 (2000).

27. L. Pareschi and G. Russo, On the stability of spectral methods for the homogeneous Boltzmann equation,
Transp. Theory Stat. Phys.29 (2000).

28. L. Pareschi, G. Russo, and G. Toscani, M´ethode sp´ectrale rapide pour l’equation de Fokker–Planck–Landau,
C. R. Acad. Sci. Paris, Ser. 1330, 517 (2000).

29. L. Pareschi, G.Toscani, and C. Villani, Spectral methods for the non cut-off Boltzmann equation and numerical
grazing collision limit, preprint (1999).

30. I. F. Potapenko and C. A. de Arzevedo, The completely conservative difference schemes for the nonlinear
Landau–Fokker–Planck equation,J. Comput. Appl. Math.103, 115 (1999).

31. M. N. Rosenbluth, W. MacDonald, and D. L. Judd, Fokker–Planck equation for an inverse square force,Phys.
Rev.107, 1 (1957).

32. G. Strang, On the construction and comparison of difference schemes,SIAM J. Numer. Anal.5, 506 (1968).

33. C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations,
Arch. Rat. Mech. Anal.143(3), 273 (1998).

34. F. S. Zaitsev, V. V. Longinov, M. R. O’Brien, and R. Tunner, Difference schemes for the time evolution of
three-dimensional kinetic equations,J. Comput. Phys.147, 239 (1998).


	1. INTRODUCTION
	2. SPECTRAL PROJECTION OF THE FPL EQUATION
	3. AN n log2 n EXACT ALGORITHM
	4. NUMERICAL TESTS
	TABLE I
	TABLE II
	TABLE III
	FIG. 1.
	FIG. 2.
	FIG. 3.
	FIG. 4.
	TABLE IV
	FIG. 5.
	FIG. 6.

	5. FUTURE DEVELOPMENTS
	APPENDIX
	REFERENCES

